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Abstract

The two-region Okada—Numasawa model for solutions of star-shaped polymers has been improved by means of a change in the integration
order and introduction of a concentration-dependent and molar-mass-dependent Flory—Huggins interaction parameter (the second and third
approximations of the Flory—Huggins theory). To overcome calculation difficulties, a special algorithm for computing coexistence curves of
polymeric systems with an UCST has been used. The agreement between the experimental and calculated coexistence curves for the star-
shaped polystyrene (PS)—cyclohexane system has been improved: the difference between 7.s is ~0.33 K against ~12 K as given by the

original model. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Flexible-chain polymers with star-shaped macromole-
cules possess a number of features in comparison with the
corresponding linear polymers of the same molar mass.
Among these peculiarities is a shift of the coexistence
curve downward along the temperature axis [1-3].
Yokoyama et al. [2] observed a 3 K decrease of the critical
temperature 7. in going from the linear polystyrene (PS)—
cyclohexane system to the 11-arm star-shaped PS—cyclo-
hexane one (M = 2.05 X 10°). The polymer solubility (the
left-hand branch of the coexistence curve, T <T,)
correspondingly rose after this change in molecular
architecture. This phenomenon cannot be explained in the
framework of the classical Flory—Huggins theory [4].

Several attempts have been made to find an explanation
of the phenomenon. Okada et al. [3] allowed for the increase
in the number of end segments per macromolecule, the
Flory—Huggins interaction parameter y being less for the
end segment—solvent interactions than for the middle
segment—solvent ones. However, the effect taken into
account turned out to be quantitatively insufficient to
explain the observed solubility difference.
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Saeki [5] approached the problem from the viewpoint of
combinatory entropy of mixing. According to his concept,
to calculate this quantity for a star-shaped polymer solution,
the number of segments per macromolecule should be
replaced by that per arm only. Such an operation correctly
predicts the direction of the observed changes in the critical
concentration ¢, but a considerable overestimation takes
place, e.g. for the PS—cyclohexane system, the experimental
shift of ¢, is 0.03—0.04 [2] while calculations give
0.0306 — 0.0719 (6.3 arms on the average). Critical
temperature was not considered in that paper though it
may turn out to be more informative than critical concentra-
tion due to a noticeable flatness of the coexistence curve top
(see fig. 3 in Ref. [6]).

We have estimated the shift of 7, using the data from Ref.
[6]: 11 arms, the number of segments N = 17,600, N/f =
1600, x = 0.2211 + 85.31/T. The critical temperature is
297.8 and 280.4 K for the linear and star-shaped polymer,
respectively. The difference of 17.4 K seems rather large in
comparison with the experimental value (~3 K).

Numasawa and Okada [4] applied the hybrid theory of
Koningsveld et al. [7] (also known as the third approxima-
tion of the Flory—Huggins theory [8]) to star-shaped
polymers. The only account of molecular architecture was
in the difference between the values of C in the formula for
h(z) [9]

hz) =1-Cz (D

z being the dimensionless excluded-volume parameter.
Although the hybrid theory provides a good fit between
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theory and experiment in the case of linear chains, it predicts
an upward shift of the coexistence curve instead of the
actual downward one. A number of other actions undertaken
by the authors (variations of the estimated overlap concen-
tration ¢, the replacement of the composition of y for
dilute and concentrated solutions as in the original hybrid
theory by a composition of the chemical potentials of
solvent) brought about no improvement.

The two-region model of Okada and Numasawa [6]
proposed for star-shaped polymers with a sufficiently big
number of arms and based on the Daoud—Cotton theory [10]
seems the most promising one. Its most noteworthy feature is a
separate consideration of the internal region (the neighbour-
hood of the central unit of a star-shaped macromolecule)
where the segment concentration is higher than the average
one, and of the external region (the other space) where the
relation is opposite. For simplicity, the first approximation
of the Flory—Huggins theory (xy = x.) and averaging the
concentration over the internal region were employed. An
8 K downward shift of the calculated critical point was
reported, against the 3 K difference observed in experiments.

It should be noted that in fig. 3 from Ref. [6] the
calculated and experimental coexistence curves for the
linear polymer are rather far apart (the difference in T, is
about 7 K). It seems desirable to adjust these curves nearer
to each other prior to calculations for the star-shaped
polymer. To this end, a concentration-dependent y
parameter must be introduced [7,11], which may well
make calculations enormously difficult.

To overcome the problem, the method of computing
coexistence curves should be modified. At present, a set
of non-linear equations expressing the equality of the
chemical potential of each component in each phase is
written and then solved numerically [11]. Such an algorithm
requires a happy choice of the initial point (two concentra-
tions) or else convergence will not be achieved. Since the
critical point, as a rule, is not calculated separately but a
whole coexistence curve is plotted from higher ys (lower
Ts) to lower ones (higher Ts), a divergence of the computa-
tional processes, once met, can be interpreted ambiguously:
either the critical temperature has been exceeded or the
initial point has been chosen unlucky. By the way, the initial
point comprises two concentrations (according to the
number of equations in the set), which leaves a too wide
field for manoeuvre to improve the choice of the initial point.

As both equations in the set originate from one, namely,
the formula for the Gibbs free energy of mixing AG,, (¢;
params), it seems reasonable to develop an algorithm invol-
ving this equation only (perhaps, with several derivatives).
Besides, two sought variables should be replaced by one,
easily estimated initially; the algorithm should indicate
immediately whether the critical temperature is exceeded.

Such an algorithm is described in Appendix A and has
enabled the two-region Okada—Numasawa model to be
improved. Here we propose a number of corrections to
this model.

2. Model

Okada and Numasawa [6] accepted the following expres-
sion for the radial density of segments:

NP 1 r
by(r) = FR;;“P(‘@), )

where N is the total number of segments, 12 the volume of a
segment or a lattice cell, R, the radius of gyration, r the
distance to the centre. When r— 0, ¢ (r) — oo while
physical sense dictates ¢ (r) — 1. So, as a first correction
we restrict the rise of ¢ (r) to unity. A quantity R, was
introduced and (Fig. 1, cf. fig. 1 from Ref. [6])

17 rSRl;
d)s(r): Rl (Rl —r) (3)
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The algorithm of calculating AG, has therefore been
supplemented by the determination of R, (straightforward).
It is interesting that R” (the radius at which ¢(r) falls to the
concentration ¢,, in the external region) undergoes no
change. The volume 4mwR™/3 where ¢(r) =1 does not
contribute to the enthalpy of mixing, which, under phase
separation conditions, must increase the polymer solubility.
A second correction concerns the order of integration. As
was mentioned above, the original model averages the
segment concentration over the whole internal region

3

.
o= s jo B dr, @

then the value obtained is substituted into the expression for

l
. |
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Fig. 1. Unity-corrected schematic representation of local segment concen-
tration ¢4(r) in a semidilute solution of a star-shaped polymer (cf. fig. 1
from Ref. [6]).
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the enthalpy of mixing

AH, 4 RS ¢

®T Tw)@in(l_(ﬁm)‘F'“ (5)

This simplifies calculations drastically but integration of the
r-dependent enthalpy term with no averaging of concentra-
tion is more rigorous

AH,

¢
=+
RT NBX

R
j S — (AT dr + - (6)
R,

Integration is performed analytically with the given form of
(1) (Eq. (2)).

Thereby ground has been prepared for introducing a third
(a concentration-dependent y or g) and a fourth corrections
(the hybrid theory):

AH,, R
rr T % . (b (M) Py(r)(1 — y(r)amr” dr + -

)

This time we have to integrate by quadratures (the Gauss—
Legendre quadratures [12]). However, this simplifies the
differentiation required by the algorithm (see Appendix A).

As was mentioned in Section 1, the hybrid theory of
Koningsveld was already used to calculate the coexistence
curve of star-shaped polymers [4], but the authors confined
themselves to the change of the coefficient C in h(z)
(Eq. (1)). Here we have a choice: to use either the original
set of formulas for linear chains (FKOm, S, KY, CM) as in
Ref. [7] or Eq. (1) used by Numasawa and Okada [4]. There
is an additional variant (which produces the best results),
namely, to modify each formula from the set (except KY
which is a two-parameter one) in view of an altered
coefficient C

32
C= W[7_4X2U2 +(f — D17 %2

—9x312 gy, (8)
hz)=1-Cz  (Trivial), 9)
h(z) = log(1 +2¢2) (FKO, m), (10)

2Cz
o) = — S 11
O=15 O (11

1 —exp(—2C2)

hz) = . (CM). (12)

As z takes on negative values under phase separation condi-
tions, the FKOm formula works within a too narrow
temperature range near the critical point and therefore has
been excluded from consideration.
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Fig. 2. Calculated coexistence curve of the 6.3-arm star-shaped PS—cyclo-
hexane system and the experimental critical point [2] (experimental data
adapted from Ref. [2]).

3. Results and discussion

The best results have been achieved with the Stockmayer
(S) formula for h(z) with the f~dependent C. The calculated
coexistence curves for the star-shaped PS-—cyclohexane
system are shown in Fig. 2 (f = 6.3) and Fig. 3 (f = 11).
Fig. 2 also includes the critical point (¢, = 0.0393, T, =
28 °C [2]) while the whole experimental coexistence curve
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Fig. 3. Calculated (solid line) and experimental (<) [2] coexistence curves
of the 1l-arm star-shaped PS—cyclohexane system (experimental data
adapted from Ref. [2]).
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from the same paper is placed on Fig. 3. One can see an
obvious improvement in comparison with the predictions of
the original theory: the experiment—calculation difference
of ~12K (f =11) is reduced to ~0.33 K; for f = 6.3,
agreement is very good (experimental 7. = 301.15K,
calculated 7, = 301.157 K). Such is the overall effect of
all the four corrections.

The critical concentration ¢, is reproduced much
worse: the experimental values are 0.0393 and 0.0371
for f = 6.3 and 11 [2], respectively, while the calculated
values lying within 0.05 and 0.06. In this connection,
one can notice that the tops of the coexistence curves look
rather flat, which makes difficulties in estimating ¢..
Besides, classical theories fail in the critical region, and
¢ does not seem a reliable criterion for experiment—theory
comparison.

There is another demerit of the calculated curves, namely,
their branches going more steep than it is observed for the
experimental coexistence curves. A similar observation was
made by Okada and Numasawa [6] for their results, they
attributed this narrowness to that disadvantage of the Flory—
Huggins theory which is overcome by providing for the
dilute solution peculiarities [7]. Having compared Fig. 3
with fig. 3 from Ref. [6], the reader can see that the
calculated curves have indeed become somewhat wider
though, qualitatively, a difference in the slopes remains. In
our opinion, it should be attributed to the fact that the formulas
for h(z) used (including the Stockmayer one) were derived
mainly for positive values of z (a good solvent, no phase
separation). Figs. IV-3, 5—7 from Ref. [13] contain only the
positive abscissa semiaxis, all the formulas for h(z) (except
the CM one) fail at a certain negative z—all this confirms
our supposition. Therefore, the accuracy of these formulas
diminishes as temperature goes from 7 to lower values (in
our case; in general, as the excluded-volume parameter z
becomes more negative), the error of estimating ¢s in the
coexisting phases increases, the calculated coexistence
curve’s branches get a slope different from that of the
experimental curves.

Thus, the improved Okada—Numasawa model described
in this paper, having been calibrated against the correspond-
ing linear polymer, predicts the critical temperature well
while the critical concentration and the shape of coexistence
curves are less well reproduced.
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Appendix A. Algorithm for the calculation of binodals of
polymer—solvent systems with a UCST

As is known (e.g. Ref. [8]), if the free Gibbs energy of
mixing AG,, is plotted against the volume fraction of
polymer ¢ and a bitangent line is drawn to this curve
(Fig. 4, solid lines), the abscissae of the points of tangency
will be equal to the volume fractions of polymer in the
coexisting phases.

The algorithm used in the present work is based on the
observation that if the slope of the bitangent line (say, K)
multiplied by ¢ is subtracted from both AG,(¢p) and the
bitangent line equation, this straight line will become
parallel to the abscissa axis, the tangency will take place
at the two minima of the modified AG,(¢) curve, the
deepness of these minima will become equal, and the
abscissae of the points of tangency will not be altered
(Fig. 4, dotted lines). So, the task is reduced to finding
such a value of K (negative) at which the elevated curve
will possess two minima of an equal depth.

To be used, the algorithm requires a subroutine to
calculate AG,(¢) itself and its first and second deriva-
tives with respect to ¢ (the third derivative is welcome
but not mandatory). Before its use in the present work,
it had been tested on the AG,(¢) formulae from the
first, second, and third approximations of the Flory—
Huggins theory [8,15]. The Flory theory for rod-like
macromolecules [16] was also involved (a bill-looking
binodal). Of course, in the case of the possibility of more
than one bitangent line existing, the Gibbs curve requires a
more thorough analysis than that done by the algorithm used
here.

¢

Fig. 4. Illustration of the technique used for binodal computation.
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